摘要:甘薯是世界上重要的粮食作物。甘薯遗传上的高度杂合性、种间种内杂交不亲和性以及多倍性, 使甘薯常规育种面临诸多挑战。生物技术在改良甘薯品质、抗病性、抗逆性等方面具有很大应用潜力。概述了甘薯生物技术育种的研究现状, 主要包括细胞工程、分子标记辅助育种、基因工程等。
关键词:甘薯; 细胞工程; 分子育种;
作者简介: 翟红, 女, 教授, 博士, 主要从事甘薯遗传育种研究。
Progress in sweetpotato biotechnology
Abstract:Sweetpotato is an important food crop in the world.This crop, a highly heterozygous, generally self-incompatible, outcrossing polyploidy, poses numerous challenges for the conventional breeding.Biotechnology has been shown to have the great potentialities for improving the nutritional quality and resistance to diseases and stresses in sweetpotato.The current situations of sweetpotato biotechnology including cell biotechnology, molecular marker-assisted breeding and gene engineering are reviewed in this paper.
Keyword:sweetpotato; cell biotechnology; molecular breeding;
甘薯是世界上第7大重要粮食作物, 同时也是饲料、工业原料、生物质能源作物[1].因此, 多用途、专用型已成为我国甘薯改良的主要目标。甘薯遗传上的高度杂合性、杂交不亲和性等使甘薯杂交育种面临诸多挑战。生物技术已经成为改良甘薯的重要途径之一, 通过细胞工程、分子标记辅助选择、发掘重要性状基因、遗传转化等技术可望定向改良甘薯主要农艺性状[2,3].因此, 通过生物技术育种与常规育种方法的有机结合, 可以加快甘薯的育种进程, 提高优良品种的育种效率。本文综述了近年来甘薯生物技术育种的研究进展, 为甘薯的进一步开发利用奠定基础。
1、甘薯体细胞杂交
甘薯组中存在严重的种间杂交不亲和性, 使得甘薯近缘野生种的基因资源难以在甘薯育种中直接利用。研究表明, 体细胞杂交是克服种间杂交不亲和性的有效途径。目前, 我国研究者已获得一些甘薯品种和近缘野生种的多个杂交不亲和组合的体细胞杂种植株, 特别是育性正常、具有块根的体细胞杂种植株[4].Yang等[3]获得徐薯18与I.triloba的体细胞杂种植株, 并从中筛选出具有膨大块根的抗旱杂种植株。Jia等[5]对本研究室获得的髙系14号与I.triloba的体细胞杂种KT1抗旱性进行鉴定, 表明KT1的抗旱性显着高于高系14号。RNA-Seq和qRT-PCR分析表明, KT1遗传了其野生种亲本I.triloba的干旱胁迫响应相关基因, 这些基因在干旱胁迫下显着上调表达。表观遗传变异分析表明, KT1中高系14号特异的基因组条带和甲基化位点比例显着高于I.triloba.
2、甘薯连锁图谱构建与QTL定位
甘薯是同源六倍体作物, 遗传背景复杂, 高度杂合, 染色体数目多达90条, 使甘薯的遗传图谱构建落后于水稻、小麦、玉米等主要作物。目前, 主要采用Grattapaglia等[6]提出的“双假测交” (pseudo-testcross) 策略, 构建了甘薯的分子连锁图谱[7,8,9,10,11,12,13].已构建的甘薯分子连锁图谱列于表1中, 其中已报道的密度最高的甘薯分子连锁图谱是Zhao等[13]以甘薯品种徐薯18与徐781杂交获得的F1代分离群体为作图群体构建的, 所用标记包括AFLP和SSR, 两亲本均得到90个连锁群, 徐薯18图谱由1 936个AFLP标记和147个SSR标记组成, 总图距为8 185cM, 标记间平均距离3.9cM;徐781图谱由1 824个AFLP标记和130个SSR标记组成, 总图距为8 152cM, 标记间平均距离4.2cM.
甘薯的多数经济性状及农艺性状均为数量性状[14], 定位与这些性状相关的QTL, 进而克隆相关的主效基因, 是用基因工程操作改良这些性状的重要基础。到目前为止, 已经定位了甘薯产量、淀粉含量、β胡萝卜素含量等相关的QTL[15,16,17,18,19,20,21].
表1 甘薯分子遗传图谱构建及QTL定位
Tab.1 Linkage map construction and QTL mapping in sweetpotato
a表示群体大小
3、甘薯非生物胁迫抗性基因工程
植物暴露于盐、干旱、冷冻等非生物胁迫环境中会触发许多共同的防御机制, 涉及到许多方面的变化, 如激活或者增加基因的表达、ABA含量的瞬时升高、可溶性糖和保护性蛋白质的积累、抗氧化剂水平的升高等[22].一些与胁迫相关的基因在提高甘薯对盐、干旱、氧化等胁迫抗性方面具有一定的作用。
Gao等[23,24]分别将拟南芥AtLOS5和AtSOS基因导入甘薯品种栗子香和徐薯18中, 获得了耐盐性显着提高的转基因甘薯新材料。Park等[25]从甘薯中克隆了LEA14基因, 发现过表达该基因显着提高甘薯愈伤组织的耐盐性。王欣等[26]将Cu/Zn SOD和APX基因导入甘薯, 提高了转基因甘薯的耐盐性。Fan等[27]将菠菜的SoBADH基因导入甘薯中, 提高了转基因甘薯植株对盐胁迫、氧化胁迫及低温等胁迫的抗性。Kim等[28,29]利用RNAi技术分别使甘薯愈伤组织中的IbCHY-β和IbLCY-ε基因下调表达, 转基因甘薯愈伤组织的β胡萝卜素含量和耐盐性显着提高。Ruan等[30]将拟南芥HDG11基因导入甘薯, 增强了转基因甘薯植株的抗旱性。Wang等[31,32,33,34,35,36]分别从甘薯耐盐株系ND98中克隆了IbNFU1、IbP5CR、IbMas、IbSIMT1和IbNHX2基因, 在盐、干旱等胁迫下, 这些基因的过表达显着增强了转基因甘薯植株的耐盐性。同野生型对照植株相比, 过表达IbNHX2基因甘薯植株抗旱性显着提高。Zhai等[37]将克隆的IbMIPS1基因导入甘薯, 在盐、旱胁迫下, 该基因的过表达显着上调肌醇生物合成、磷脂酰肌醇 (PI) 信号途径、ABA信号途径、胁迫响应等相关基因的表达, 转基因甘薯植株的耐盐性和抗旱性显着提高。Kim等[38]从甘薯中克隆得到IbOr基因, 发现过表达该基因的甘薯愈伤组织的β胡萝卜素、叶黄素和总类胡萝卜素含量提高, 抗氧化酶活性增强, 耐盐性提高。Wang等[39]利用RNAi技术使甘薯IbDFR基因下调表达, 使得转基因甘薯的花青素积累降低而减弱了抗氧化能力。转入IbMYB1基因的高胡萝卜素甘薯品种的抗氧化能力得到明显提高[40].
4、甘薯抗病虫基因工程
甘薯的病虫害严重制约着其生产, 提高抗病性是甘薯育种的重要目标之一。基因工程技术为培育高产、优质、多抗和适应性强的甘薯新品种提供了新思路和新途径。
Muramoto等[41]将大麦αHT基因导入甘薯, 黑腐病病原真菌C.fimbriata侵染后, 同野生型对照植株相比, 转基因植株的抗性明显提高。Gao等[42,43]将水稻OCI基因导入甘薯, 显着提高了转基因甘薯对茎线虫病抗性。Zhai等[37]研究发现, 过表达IbMIPS1基因的甘薯植株通过系统上调抗性相关基因、增减抗性相关物质的含量等显着增强了对茎线虫病的抗性。表达水稻OCI基因的甘薯提高了对SPFMV病毒侵染的抗性[44].Okada等[45]将CP基因导入甘薯, SPFMV-S病毒侵染后, 转基因植株的抗性明显增强。Sivparsad等[46]将SPFMV、SPCSV、SPVG和SPMMV病毒外壳蛋白基因片段导入甘薯, 提高了转基因甘薯对多种病毒的抗性。过表达IbNAC1的甘薯植株增强了储藏蛋白基因的表达, 提高了胰蛋白酶抑制剂活性, 增强了对食草昆虫的抗性[47].Li等[48]获得了过表达和RNAi干扰IbpreproHypSys基因表达的甘薯, 增强了转基因甘薯的抗虫性。
5、甘薯品质改良基因工程
Kimura等[49]将IbGBSSI基因在甘薯中过表达后得到了一个几乎检测不到直链淀粉含量的株系, 表明基因工程可以改变淀粉的组成。RNAi干扰技术也能够改变甘薯直链淀粉的含量[50].Santa-Maria等[51]发现, 表达嗜热α淀粉酶基因甘薯块根中淀粉在高温 (80℃) 条件下容易水解。RNAi干扰IbSBEⅡ基因的表达能够提高甘薯直链淀粉的含量[52].Wang等[53]克隆了IbAATP基因, 将其转入甘薯, 发现IbAATP基因能够显着提高转基因甘薯植株的淀粉合成能力, 并通过影响淀粉合成相关基因的表达而改变淀粉含量、组成及特性。转基因甘薯中, SBD2基因的表达影响淀粉颗粒形态而未改变淀粉分子的结构组成[54].Tanaka等[55]分离了甘薯SRF1基因, 过表达SRF1基因的甘薯植株的块根干物质含量、淀粉含量高于野生型对照植株, 而葡萄糖和果糖含量明显较少。Wang等[56]发现表达玉米Lc基因的甘薯块根生长过程中, 与野生型对照植株相比, 木质化程度增强, 而产量和淀粉积累减少。此外, 表达烟草NtFAD3基因的甘薯植株中亚麻酸含量高于野生型对照[57].Noh等[58]发现, IbEXP1基因通过抑制后生木质部和形成层细胞的增殖而抑制甘薯块根的生长。
Kim等[28]发现, 下调CHY-β基因的表达增加了转基因甘薯培养细胞的β胡萝卜素和总类胡萝卜素含量。LCY-ε基因的下调表达也能够增加转基因甘薯愈伤组织的类胡萝卜素合成[29].IbOr基因的过表达提高了紫色甘薯中类胡萝卜素水平[59].Park等[40]将IbMYB1基因导入橙色甘薯, 提高了转基因甘薯的花青素水平。IbDFR基因的下调减少了转基因甘薯花青素的积累。
6、展望
生物技术育种是甘薯育种研究领域的热点之一, 具有广泛的应用前景。目前, 国内外研究者在甘薯分子连锁图谱的构建、性状相关基因的定位及克隆等方面已取得较大的进展, 为甘薯分子标记辅助育种奠定了一定的基础。然而, 常规育种方法仍然是今后育种的主要研究方向。随着甘薯近缘野生种以及栽培品种基因组测序的完成, 运用各种分子技术挖掘甘薯重要性状的基因, 将分子技术育种与常规育种技术相结合将极大地促进甘薯育种的发展。
参考文献
[1]Liu Q C.Sweetpotato omics and biotechnology in China[J].Plant Omics J, 2011, 4 (6) :295.
[2]柳哲胜, 刘庆昌, 翟红, 等。用改进的SSAP方法克隆抗甘薯茎线虫病相关的RGA[J].分子植物育种, 2005, 3 (3) :369.
[3]Yang Y F, Guan S K, Zhai H, et al.Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam.and I.triloba L.[J].Plant Cell Tissue Organ Cult, 2009, 99 (1) :83.
[4]Guo J M, Liu Q C, Zhai H, et al.Regeneration of plants fromIpomoea cairica L.protoplasts and production of somatic hybrids between I.cairica L.and sweetpotato, I.batatas (L.) Lam.[J].Plant Cell Tissue Organ Cult, 2006, 87 (3) :321.
[5]Jia L C, Zhai H, He S Z, et al.Analysis of drought tolerance and genetic and epigenetic variations in a somatic hybrid between Ipomoea batatas (L.) Lam.and I.triloba L.[J].J Integr Agric, 2017, 16 (1) :36.
[6]Grattapaglia D, Sederoff R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using apseudo-testcross:mapping strategy and RAPD markers[J].Genetics, 1994, 137 (4) :1121.
[7]Ukoskit K, Thompson P G.Autopolyploidy versus allopolyploidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato[J].J Amer Society Horti Sci, 1997, 122 (6) :822.
[8]Kriegner A, Cervantes J C, Burg K, et al.A genetic linkage map of sweetpotato[Ipomoea batatas (L.) Lam.]based on AFLP markers[J].Mol Breed, 2003, 11 (3) :169.
[9]Cervantes-Flores J C, Yencho G C, Kriegner A, et al.Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers[J].Mol Breed, 2008, 21 (4) :511.
[10]蒲志刚, 王大一, 谭文芳, 等。利用AFLP构建甘薯连锁图及淀粉含量QTL定位[J].西南农业学报, 2010, 23 (4) :1047.
[11]唐茜, 何凤发, 王季春, 等。甘薯SRAP遗传图谱构建及淀粉含量QTL初步定位[J].西南大学学报 (自然科学版) , 2010, 32 (6) :40.
[12]李爱贤, 刘庆昌, 王庆美, 等。利用SRAP标记构建甘薯分子连锁图谱[J].作物学报, 2010, 36 (8) :1286.
[13]Zhao N, Yu X X, Jie Q, et al.A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato[J].Mol Breed, 2013, 32 (4) :807.
[14]Cervantes-Flores J C, Yencho G C, Davis E L.Host reactions of sweetpotato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations[J].HortScience, 2002, 37 (7) :1112.
[15]吴洁, 谭文芳, 何俊蓉, 等。甘薯SRAP连锁图构建淀粉含量QTL检测[J].分子植物育种, 2005, 3 (6) :841.
[16]Chang K Y, Lo H F, Lai Y C, et al.Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas) [J].Bot Stud, 2009, 50 (1) :43.
[17]李爱贤, 刘庆昌, 王庆美, 等。甘薯淀粉含量的QTL定位[J].分子植物育种, 2010, 8 (3) :516.
[18]李爱贤, 申春云, 王庆美, 等。甘薯β-胡萝卜素含量的QTL定位[J].分子植物育种, 2014, 12 (2) :270.
[19]Cervantes-Flores J C, Sosinski B, Pecota K V, et al.Identification of quantitative trait loci for dry-matter, starch, andβ-carotene content in sweetpotato[J].Mol Breed, 2011, 28 (2) :201.
[20]Li H, Zhao N, Yu X X, et al.Identification of QTLs for storage root yield in sweetpotato[J].Sci Hortic, 2014, 170:182.
[21]唐道彬, 张凯, 吕长文, 等。基于EST-SSR标记甘薯连锁图谱构建及淀粉性状的QTL定位[J].中国农业科学, 2016, 49 (23) :4488.
[22]Zhang H, Han B, Wang T, et al.Mechanisms of plant salt response:insights from proteomics[J].J Proteome Res, 2012, 11 (1) :49.
[23]Gao S, Yuan L, Zhai H, et al.Transgenic sweetpotato plants expressing an LOS5gene are tolerant to salt stress[J].Plant Cell Tissue Organ Cult, 2011, 107 (2) :205.
[24]Gao S, Yuan L, Zhai H, et al.Overexpression of SOSgenes enhanced salt tolerance in sweetpotato[J].J Integr Agric, 2012, 11 (3) :378.
[25]Park S C, Kim Y H, Jeong J C, et al.Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic-and salt stress-tolerance of transgenic calli[J].Planta, 2011, 233 (3) :621.
[26]王欣, 过晓明, 李强, 等。转逆境诱导型启动子SWPA2驱动Cu/Zn SOD和APX基因甘薯 (Ipomoea batatas (L.) Lam.) 耐盐性[J].分子植物育种, 2011, 9 (6) :754.
[27]Fan W J, Zhang M, Zhang H X, et al.Improved tolerance to various abiotic stresses in transgenic sweetpotato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase[J].PLoS ONE, 2012, 7 (5) :e37344.
[28]Kim S H, Ahn Y O, Ahn M J, et al.Down-regulation of beta-carotene hydroxylase increases beta-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J].Phytochemistry, 2012, 74:69.
[29]Kim S H, Ahn Y O, Ahn M J, et al.Downregulation of the lycopeneε-cyclase gene increases carotenoid synthesis via theβ-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli[J].Physiol Plant, 2013, 147 (4) :432.
[30]Ruan L, Chen L J, Chen Y H, et al.Expression of Arabidopsis HOMEODOMAIN GLABROUS 11enhances tolerance to drought stress in transgenic sweetpotato plants[J].Plant Bio J, 2012, 55 (2) :151.
[31]Wang L J, He S Z, Zhai H, et al.Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1from sweetpotato[J].J Integr Agric, 2013, 12 (1) :27.
[32]Liu D G, He S Z, Zhai H, et al.Overexpression of IbP5CRenhances salt tolerance in transgenic sweetpotato[J].Plant Cell Tissue Organ Cult, 2014, 117 (1) :1.
[33]Liu D G, Wang L J, Liu C L, et al.An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance[J].PLoS ONE, 2014, 9 (4) :e93935.
[34]Liu D G, Wang L J, Zhai H, et al.A novelα/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato[J].PLoS ONE, 2014, 9 (12) :e115128.
[35]Liu D G, He S Z, Song X J, et al.IbSIMT1, a novel salt-induced methyltransferase gene fromIpomoea batatas, is involved in salt tolerance[J].Plant Cell Tissue Organ Cult, 2015, 120 (2) :701.
[36]Wang B, Zhai H, He S Z, et al.A vacuolar Na+/H+antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato[J].Sci Hortic, 2016, 201:153.
[37]Zhai H, Wang F B, Si Z Z, et al.A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato[J].Plant Biotech J, 2016, 14 (2) :592.
[38]Kim S H, Ahn Y O, Ahn M J, et al.Cloning and characterization of an orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures[J].Plant Physiol Biochem, 2013, 70:445.
[39]Wang H X, Fan W J, Li H, et al.Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses[J].PLoS ONE, 2013, 8 (11) :e78484.
[40]Park S C, Kim Y H, Kim S H, et al.Overexpression of the IbMYB1gene in an orange-fleshed sweetpotato cultivar produces a dual-pigmented transgenic sweetpotato with improved antioxidant activity[J].Physiol Plant, 2015, 153 (4) :525.
[41]Muramoto N, Tanaka T, Shimamura T, et al.Transgenic sweetpotato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriatain leaves and storage roots[J].Plant Cell Rep, 2012, 31 (6) :987.
[42]Gao S, Yu B, Yuan L, et al.Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-Ⅰgene[J].Sci Hortic, 2011, 128 (4) :408.
[43]Gao S, Yu B, Zhai H, et al.Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-Ⅰgene[J].Agric Sci China, 2011, 10 (4) :519.
[44]Cipriani G, Fuentes S, Bello V, et al.Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus[R]//CIP Program Report.Lima:CIP, 1999-2000:267.
[45]Okada Y, Saito A, Nishiguchi M, et al.Virus resistance in transgenic sweetpotato[Ipomoea batatas L. (Lam.) ]expressing the coat protein gene of sweetpotato feathery mottle virus[J].Theor Appl Genet, 2001, 103 (5) :743.
[46]Sivparsad B J, Gubba A.Development of transgenic sweetpotato with multiple virus resistance in South Africa (SA) [J].Transgenic Res, 2014, 23 (2) :377.
[47]Chen S P, Lin I W, Chen X Y, et al.Sweetpotato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack[J].Plant J, 2016, 86 (3) :234.
[48]Li Y C, Wan W L, Lin J S, et al.Signal transduction and regulation of IbpreproHypSys in sweetpotato[J].Plant Cell Environ, 2016, 39:1576.
[49]Kimura T, Otani M, Noda T, et al.Absence of amylose in sweet potato[Ipomoea batatas (L.) Lam.]following the introduction of granule-bound starch synthaseⅠcDNA[J].Plant Cell Rep, 2001, 20 (7) :663.
[50]Otani M, Hamada T, Katayama K, et al.Inhibition of the gene expression for granule-bound starch synthaseⅠby RNA interference in sweetpotato plants[J].Plant Cell Rep, 2007, 26 (10) :1801.
[51]Santa-Maria M C, Yencho C G, Haigler C H, et al.Starch self-processing in transgenic sweetpotato roots expressing a hyperthermophilic alpha-amylase[J].Biotechnol Progress, 2011, 27 (2) :351.
[52]Shimada T, Otani M, Hamada T, et al.Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzymeⅡgene (IbSBEⅡ) [J].Plant Biotechnol, 2006, 23 (1) :85.
[53]Wanf Y N, LI Y, Zhang H, et al.A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose contents and alters starch structure in transgenic sweetpotato[J].J Integr Agric, 2016, 15 (9) :1968.
[54]Zhang Y F, Ji Q, Xing Y J, et al.Expression of an engineered tandem-repeat starch-binding domain in sweetpotato plants[J].Afri J Biotechnol, 2013, 12 (41) :5994.
[55]Tanaka M, Takahata Y, Nakayama H, et al.Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1gene, which encodes a Dof zinc finger transcription factor[J].Planta, 2009, 230 (4) :737.
[56]Wang H X, Yang J, Zhang M, et al.Altered phenylpropanoid metabolism in the maize Lc-expressed sweetpotato (Ipomoea batatas) affects storage root development[J].Sci Rep, 2016, 6:18645.
[57]Wakita Y, Otani M, Hamada T, et al.A tobacco microsomalω-3fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas) [J].Plant Cell Rep, 2001, 20 (3) :244.
[58]Noh S A, Lee H S, Kim Y S, et al.Down-regulation of the IbEXP1gene enhanced storage root development in sweetpotato[J].J Exp Bot, 2013, 64 (1) :129.
[59]Park S C, Kim S H, Park S, et al.Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar[J].Plant Physiol Biochem, 2015, 86:82.